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| ecture Objectives

- Relate linear regression and logistic regression

- Emphasis difference between estimating probabilities
and quantities.
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L earning Types

- Supervised Learning with Labeled Data. (Today)

- Methods: Regression or classification

- Objective: To predict a response or outcome.

- Unsupervised Learning with Unlabeled Data.

- Methods: Clustering, Principal Component Analysis (PCA), autoencoders,
generative adversarial networks (GANS)

- Objective: Identity patterns in the data or understand how data was created.
+ Best distinction between the two:

* Is there a response variable Y?



Supervised Learning:
Classification
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How can we classify the data?

Training Data
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w*  Binary (Logical) Data

Data exists in two states: present or absent

TRUE T (1)
FALSE F  (0)

Source

* Logical values allow us to determine whether a condition is met or not.
Based on the condition, we can make a choice as to what happens next.
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What happens when z is:
a large positive number?
a large negative number?



linear

Going Between Spaces
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L ogistic Regression
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Threshold

Applying a cut-off value to make a decision
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Algorithmic View

1. Initialize parameters to zero, e.g. /3 -— ()

2. Under each training epoch:
Compute for each sample <.’13(i), y(i)> c D
A prediction: @(i) P — O(w(i),_l_ﬁ)
Prediction error: €ITOI' (= y(i) — g)(i)

Gradients Vﬁﬁ - ( (2) Q(i))w(z‘)
Parameter update: B:=0+n-VgL



- Logistic Regression was taken to be better approach for
classification.

- Logistic regression still produces a "quantity” but we
apply a threshold decision to it.
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